

Advances in Self-Consistent Accelerator modeling: status report

John R. Cary
University of Colorado and Tech-X Corporation
Presented at FNAL
6 Dec 05

Advances in Self-Consistent Electromagnetic Modeling

- Complex cavity computations with particles have been improved through algorithms, including parallelization, making possible computations of wakefields in complex structures, intrabunch effects, injectors, ...
- Summary of some of what has made this possible
 - Local charge and current deposition methods
 - Parallelization
 - Improved stability
 - Boundary representations
- Comparison with
 - Finite element approaches
 - Unitary separation approaches

The goals of modeling?

- Part of the design process
 - Create
 - Simulate
 - Build
 - Test
- Simulation for prediction of
 - Cavity losses
 - Instability
- In general for
 - Exploration
 - Confirmation
 - Elucidation

Modeling allows one to answer questions without construction cost

NLC

ILC (Tesla)

Basic problem in charge particles moving in EM fields

Maxwell

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}$$

$$\frac{\partial \mathbf{E}}{\partial t} = c^2 [\nabla \times \mathbf{B} - \mu_0 \mathbf{j}]$$

Particle sources

$$\mathbf{j} = \sum q_i \mathbf{v}_i \delta(\mathbf{x} - \mathbf{x}_i)$$

Particle dynamics

Particle dynamics
$$\frac{d(\gamma \mathbf{v})}{dt} = \frac{q_i}{m_i} \left[\mathbf{E}(\mathbf{x}_i, t) + \mathbf{v}_i \times \mathbf{B}(\mathbf{x}_i, t) \right] \qquad \frac{d\mathbf{x}_i}{dt} = \mathbf{v}_i$$

Auxiliary equations

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{E} = \rho / \varepsilon_0$$

$$\rho = \sum q_i \delta(\mathbf{x} - \mathbf{x}_i)$$

With much other physics added for a complete model

- Particle injection
- Dark currents
- Multipactoring
- Photon (short wavelength) production
- Surface resistance
- Secondary emission

ELECTROMAGNETICS

Yee: 2nd order accurate spatial differentiation

$$\frac{\partial B_x}{\partial t} = -\frac{\partial E_z}{\partial y} + \frac{\partial E_y}{\partial z}$$

At the midpoint

$$\frac{\partial E_z}{\partial y} = \frac{E_{z,j+1} - E_{z,j}}{\Delta y} + O(\Delta y^2)$$

- Leads to special layout of values in a cell
- Yee mesh gives 2nd order accuracy of spatial derivatives

TECH

Second-order in time by leap frog

$$\frac{\partial B_{x}}{\partial t} = -\frac{\partial E_{z}}{\partial y} + \frac{\partial E_{y}}{\partial z}$$

$$B_{x,i,j,k}^{n+1/2} - B_{x,i,j,k}^{n-1/2} = \Delta t \left(\frac{E_{z,i,j,k}^n - E_{z,i,j+1,k}^n}{\Delta y} + \frac{E_{y,i,j,k+1}^n - E_{y,i,j,k}^n}{\Delta z} \right)$$

- Time centered differences give second order accuracy in Δt
- Can get time-collocated values by half-stepping in B
- Similar for E update, except c² factor

TECH

Matrix representation useful for stability

$$\frac{dB_{x,i,j,k}}{dt} = \left(\frac{E_{z,i,j,k} - E_{z,i,j+1,k}}{\Delta y} + \frac{E_{y,i,j,k+1} - E_{y,i,j,k}}{\Delta z}\right)$$

$$\frac{d\mathbf{b}}{dt} = -\mathbf{C} \cdot \mathbf{e} \qquad \frac{d\mathbf{e}}{dt} = c^2 \mathbf{C}' \cdot \mathbf{b} \qquad \frac{d^2 \mathbf{b}}{dt^2} = -c^2 \mathbf{C} \cdot \mathbf{C}' \cdot \mathbf{b} = -\mathbf{D} \cdot \mathbf{b}$$

- Magnetic and electric spaces are different
- C, C' are adjoints, so D is self-adjoint (symmetric)
- Diagonalize into separate harmonic oscillators
- Leap frog for harmonic oscillator, stability limit at

$$\omega_{\text{max}} \Delta t_{CFL} = 2 \qquad \Delta t_{CFL} = \frac{1}{c_{\sqrt{\frac{1}{\Delta x^2} + \frac{1}{\Delta y^2} + \frac{1}{\Delta z^2}}}}$$

Gershgorin Circle Theorem gives stability bound

- Frequencies are eigenmodes of $D = c^2 C'C$
- Eigenvalues in range

$$0 < \omega^2 < \max\left(\sum_{j} \left| D_{ij} \right| \right) over i$$

- Gives precise range for infinite grid
- Points to relation between coefficients and frequencies for other cases

Many other methods available

- Finite element later
- Hamiltonian splitting (de Raedt): into exactly solvable $\frac{d(\mathbf{b}, \mathbf{e})}{dt} = \mathbf{A} \cdot (\mathbf{b}, \mathbf{e}) = \mathbf{M} \cdot \mathbf{N} \cdot (\mathbf{b}, \mathbf{e})$ parts
 - known: $\frac{d\mathbf{U}_M}{dt} = \mathbf{M} \cdot \mathbf{U}_M$ $\frac{d\mathbf{U}_N}{dt} = \mathbf{N} \cdot \mathbf{U}_N$ stable approximate solution (since unitary):

$$\mathbf{U}(\Delta t) = \mathbf{U}_N(\Delta t/2) \bullet \mathbf{U}_M(\Delta t) \bullet \mathbf{U}_N(\Delta t/2)$$

- Similar to drift-kick of symplectic integration
- None of these has yet proven as effective for selfconsistent particle simulation as FDTD, explicit or implicit

PARTICLES

Computing particle-particle interactions is prohibitive

Coulomb interaction leads to N_p² force computations

$$\frac{d\gamma_i \mathbf{v}_i}{dt} = \frac{q_i}{\varepsilon_0 m_i} \sum_j q_j \frac{\mathbf{x}_i - \mathbf{x}_j}{\left|\mathbf{x}_i - \mathbf{x}_j\right|^3}$$

 Lenard-Weichert (retarded potentials) - worse due to need to keep history

$$\frac{d\gamma_i \mathbf{v}_i}{dt} = \frac{q_i}{\varepsilon_0 m_i} \sum_j q_j \mathbf{F}_{ij}(\mathbf{x}_i, \mathbf{x}_j(t - \tau))$$

Particle In Cell (PIC) reduces to N_p scaling

- Particle contributions to charges and currents are added to each cell: O(N_p) operations
- Forces on a particle are found from interpolation of the cell values: O(N_p) operations

Finding the force: interpolation (gather)

- Linear weighting for each dimension
 - 1D: linear
 - -2D: bilinear = area weighting
 - -3D: trilinear = volume weighting
- Force obtained through 1st order, error is 2nd order
- For simplicity, no loss of accuracy, weight first to nodal points

- Principle: apportion via some weighting
- Computing the charge density
 - Compute the current density and find the charge density from finite difference
 - Directly weight particles to the grid
 - If these two methods do not agree, then one can have false charge buildup from the Ampere-Maxwell equation. Requires Poisson solve to remove.
 - Villasenor/Buneman explicitly conserves charge, but is noisier

Current contrib. to this interface must match charge difference change across separated cells

Mardahl and Verboncoeur show importance of getting this right

Computer Physics Communications 106 (1997) 219-229

Charge conservation in electromagnetic PIC codes; spectral comparison of Boris/DADI and Langdon-Marder methods

P.J. Mardahl 1, J.P. Verboncoeur

Cory Hall Box 173, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA 94720-1770,

Received 1 April 1997; revised 11 August 1997

Parallelism: domain decomposition

Parallelism rules of thumb

- Communication is expensive
- Global solves are really expensive

Overlap of communication and computation needed for speed

- Non overlap algorithms:
 - Compute domain
 - Send skin (outer edge)
 - Receive guard
 - Repeat
- Overlap algorithms
 - Compute skin
 - Send skin
 - Compute interior
 - Receive guard
 - Repeat

Similar overlap possible for particles

- Move particles and weight currents to grid
- Send currents needed by neighboring processors
- Send particles to neighboring processors
- Update B for half step
- Receive currents and add in
- Update E, B
- Receive particles

Without charge conserving current deposition, further costly global solve

VORPAL implements basic algorithms in highly scalable manner

Object-oriented and flexible

(Arbitrary dimensional)

- Self-consistent EM modeling
 - Full EM or electrostatic + cavity mode
 - Particle in cell with relativistic or nonrelativistic dynamics
- But has other capabilities
 - Impact and field ionization
 - Fluid methods for plasma or neutral gases
 - Implicit EM
 - Secondary emission
- And is modern
 - Serial or Parallel (general domain decomposition)
 - Cross-platform (Linux, AIX, OS X, Windows)
 - Cross-platform binary data (HDF5)

(strong scaling)

Simplest algorithm allows complex computations

Example: formation of beams in laser-plasma interaction

Elucidation: long pulses shorten to resonance, capture, loading, acceleration

Complications: boundaries

Early work on structured meshes had stair-step boundary conditions

120x24x24 = 71,424 cells = 215,000 degrees of freedom

- Error of $(\Delta x/L)^3$ at each surface cell
- $O(N^2)$ cells on surface
- Error = $N^2(\Delta x/L)^3 = O(1/N)$

Modes computed with combination of FFT and fitting

- 3 cell SRF
- High density of higherorder modes
- FFT allows extraction of field shape
- Excite that field, measure frequency by fitting

Excite with delta-function initial condition Run 25000 steps FFT

- Stair-step error is 10⁻³ at 1000 cells per dimension, error linear with cell size
- Requires 10,000 cells per dimension to get 10⁻⁴ accuracy
- 10¹² cells for 3D problem

This approach will not give answer even on large, parallel hardware

Finite elements give one approach to improved boundary modeling

• Tau3P, HFSS, ...

$$\mathbf{B} = \sum b_k(t)\mathbf{u}_k^B(x) \qquad \mathbf{E} = \sum e_\ell(t)\mathbf{u}_\ell^E(x)$$

$$\frac{\partial \mathbf{B}}{\partial t} = \sum \frac{db_k}{dt}(t)\mathbf{u}_k^B(x) \qquad \nabla \times \mathbf{E} = \sum e_\ell(t)\nabla \times \mathbf{u}_\ell^E(x)$$

$$\sum \frac{db_k}{dt}(t)\mathbf{u}_k^B(x) = -\sum e_{\ell}(t)\nabla \times \mathbf{u}_{\ell}^E(x)$$

$$\int d^3x \sum_{k} \frac{db_k}{dt}(t) \mathbf{u}_{k'}^B(\mathbf{x}) \mathbf{u}_{k}^B(\mathbf{x}) = -\int d^3x \sum_{\ell} e_{\ell}(t) \mathbf{u}_{k'}^B(\mathbf{x}) \cdot \nabla \times \mathbf{u}_{\ell}^E(\mathbf{x})$$

$$\mathbf{M}_b \bullet \frac{d\mathbf{b}}{dt} = -\mathbf{C} \bullet \mathbf{e}$$

$$\mathbf{M}_e \bullet \frac{d\mathbf{e}}{dt} = c^2 \mathbf{C}' \bullet \mathbf{b}$$

Finite elements require global solves, more intense particle calculations

Global mass matrix inversion required at each step

$$\mathbf{M}_b \bullet \frac{d\mathbf{b}}{dt} = -\mathbf{C} \bullet \mathbf{e}$$

Self consistency difficult and charge conservation not guaranteed

$$\mathbf{M}_{e} \cdot \frac{d\mathbf{e}}{dt} = c^{2} (\mathbf{C}' \cdot \mathbf{b} - \mu_{0} \mathbf{j})$$

$$j_{\ell} = \sum_{ptcls \ i} q_{i} \mathbf{v}_{i} \mathbf{u}_{\ell}^{E} (\mathbf{x}_{i} ((n+1/2)\Delta t))$$

- Difficult to follow particles
 - List of regions
 - List of FE's with support in that region
 - Complex FE element evaluation at each time step for each particle

Resurgence of regular grids: cut cells give same accuracy as finite elements

- For cells fully interior, us regular update
- For boundary cells:
 - Store areas and lengths
 - Update fluxes via

$$\dot{\Phi}_{xy} = -E_x \ell_x - E_y \ell_y$$

Update fields via

$$B_z = \Phi_{xy} / A_{xy}$$

Cut-cell boundary conditions accurately represent geometry

- Tesla 2000 cavities
- 312x56x56 (10⁶) cells

Dey-Mittra (1997) cut-cells allow 10⁻⁴ accuracy

- Less than 10⁹ cells for cavity modeling at one part in 10⁴
- Implementation exists now in VORPAL

Dey-Mittra

- B update matrix coefs ~ length/area
- Length/area becomes infinite as area vanishes
- Get localized, high-frequency modes
- Must throw out small cell fragments

Improvement on cut-cell recently discovered

INTERNATIONAL JOURNAL OF NUMERICAL MODELLING: ELECTRONIC NETWORKS, DEVICES AND FIELDS Int. J. Numer. Model. 2003; 16:127–141 (DOI: 10.1002/jnm.488)

A uniformly stable conformal FDTD-method in Cartesian grids

I. A. Zagorodnov*, R. Schuhmann and T. Weiland

- New method gives error lower than Dey-Mittra
- Does not have reduction of stable Δt
- Favorable properties re particle introduction
- Now being implemented

Regular, structured grids allow for selfconsistent integration of particles

Wakefield for NLC cavities computed by VORPAL in 3D

Regular, structured grids allow for selfconsistent integration of particles

Wakefield for Tesla/ILC cavities computed by VORPAL₈

This capability is at FNAL now!

VORPAL installed

Future?

- More accurate EM integrators with boundaries and particles? Wish list:
 - Absolutely stable, getting slow solution correct for large time steps
 - No global solves
- More accurate particle deposition not requiring higher order in all directions
- Conformal boundaries with
 - Surface resistance
 - Dark currents